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EFFECTIVE SPHERICAL POTENTIALS FOR DETONATION PRODUCTS EOS

M. S. Shaw, B. L. Holian, and J. D. Johnson

Using a perturbation expansion, a spherical reference system is found
that reproduces the thermodynamics of an anisotropic molecular potential with
negligible contribution from higher order terms. For a given anisotropic
potential, this effective spherical potential gives pressures and energies
good to 1.5% for N2 in the region of 1.3 g/cm3 <p<2.3 g/cm3 and 500°K < T <
12000°K. Preliminary results for CO2 agree to about 3%. These resnlts help
justify the use of empirical spherical potentials for the equation of state of
detonation products.

All current modelsl of the equation of state (EOS) of detonation products
are based on spherical potentials. Given a thermodynamic theory, these po-
tent.als are usually fit to experimental data using that thermodynamic theory.
When one looks at the degree of anisotropy of typical molecules in HE products
(the NZ-N2 po.ential varies by » factor of 20 with orientation for a fixed in-
ternuclear separation and the COZ-CO2 potential varies by 3 to 4 orders of
magnitude), it is not at all cobvious that spherical potentials are adequate.
In fitting to Hugoniot data for the individual species, the pressure and en-
ergy on the Hugoniot will be correct but the temperature may not be accurate.
When one then calculates the EOS of a mixture, the temperature is important in
determining the equilibrium composition. Also, in the mixture the state will
not necessarily be near the conditions on the Hugoniots that were fit by the
theory. Therefore, the question of how well the EOS extrapolates away from
the Hugoniot is important.

Because of the uncertainty iu using spherical potentials, we have made a
series of benchmark calculations using molecular dynamics (MD) with realistic
anisotropic potentials. An EOS calculation using MD involves solving Newton's
equation (F = ma) for a collection of particles (usually a few hundred) with
periodic boundary conditions and a realistic potential. Thermodynamic quan-
tities are ‘then obtained by time averages of appropriate functions. For ex-
ample, the temperature is two-thirds of the average kinetic energy per atom in
a wmonatomic system. For a sufficiently large number of particles, boundary
effects and number dependence are nepligible. The only remaining error :is the

statistica) fluctustion of the time-averaged functions. For a typical run



length, these errors are about 0.5% but the computer time required is 5 to 10
minutes on the Cray-1 for a single EOS value.

Given the benchmark values of the EOS, we began to look for approximate
methods that gave an accurate representation of that EOS with a very small
cost in computer time. For spherical potentials, there are a number of meth-
ods2 based on hard-sphere perturbation theory that are both accurate and fast.
We chose to use the Hansouri-Canfield-Ross2 method to try out various spheri-
cal potentials. Two spherical averaging procedures were tried without suc-
cess. The arithmetic mean, ¢ = [f ¢(r,R)dQ, corresponds to a freely rotating
molecule. This gave a potential too high by 35% for N2 and by about 1000% for
C02. The average used by Perram and Uhite,3 <$p> = -ﬁ-l 2o (ff e-B¢(r’Q)dQ),
is exact 2zt low density and corresponds to the assumption that the orientation
of each pair of molecules is independent of the orientation of any other
neighboring molecules. At high densities this gives pressures and energies

that are typically 20% too low for N Finally we fit a potential to the

2
pressure, energy, and temperature, along the MD-generated Hugoniot. We then
compared the EOS along isotherms using the same potential. The agreement was

excellent, as can be seen in Fig. 1. Preliminary results for CO, were nearly

2
as good.

We then had a procedure for obtaining an effentive spherical potential
from au anisotropic one, but this required meking many MD runs tc generate a
Hugoniot. One could still empirically fit to Hugoniot data, but this can
leave a great deal of uncertainty in the temperature. We then looked for and
found a perturbation theory approach that gave an essentially identical spher-
ical potential directly from the anisotropic potential. The rest of the paper
deals with the derivation of that potential and the results obtained with it.

Thermodynamic perturbation series can be formulated in a fairly general
form as shown by Smith.3 The configurational part of the Helmholtz free ener-
gYs A, for a given pair potential u(r,1) can be rnxpanded in a Taylor series
aboL. a reference point AO given by a pair potential uo(r,Q). This is done by
defining a potential uy(r,Q) subject to the constraints uy=1(r,ﬂ) = u(r,Q) and

u¥=0(r,0) = uo(r,ﬂ). Taen we can write

2
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the usual Taylor series in the variable Y. The values of the derivatives can

be obtained from the definition of A.
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where QY is the excess part of the partition function, rij = Iri rji , Qij

is shorthand for &i,EB and &0 is shorthand for polar coordinates of the ori=

entation of molecules i; 6.,0.. If we let R.stand for r..0. and
i’hi i ij i

N N
=1 . .
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Evaluating the first two derivatives, te have
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The derivatives of the total potential aie easily written as
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Now te that the radial distribution function, gy(r

le), has the defini-
tion

12°
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with orientation W, there

This is the probability that given a molecule at ;l )

. + -
is a molecule at r, with orientation w, .
Each term in Eq. (6) can be integrated separately in Eq. (4) and by a

change of variables each term in the summation is identical, giving the result:

oA 2 . (r,.,0..)
y_ 1N yF12:%2) 3 3
5 22 IS 8(ry5:9,) 3y d7ryd7ryddy, (8)

For the choice u, spherical, then g, is also spherical and we can write

0
9A 2 du_(r,,,0,,)
X - P_ 3.3 Yy "12'712
ay) 0 2 fso(’lz)d ryd’r, 3y oy, (9)
¥=0
The second derivative is more complicated because the (auy/ay)z cerm

Y:

requires up to four particle distribution functions and care must be taken
with certain limits. The full expression is given in Snith.3 For our pur-
pose, it is sufficient to recognize that each term in the higher derivatives
of AY has integrands proporticnal to products of derivatives of u_.

We now need a convenient form for uy(r,Q). Smith3 gave a very general

form,
S(uy) = S(uy) + y[S(u)) - Sup)] (10)

where S is an arbitrary invertible function. One can see by inspection that
this form has the proper values st y = 0 and y = 1. For the choice S(x) = x,
one obtains the usual A expansion. We specialize S to the farm S(x) =
R{B(x - uo)) vhere R is an odd invertible function with no singularities near

the real axis and B is a paramrter.4 Then from Eq. (10),

R(B(uY - uo)) = yR(B(u1 - uo)) . (11)



n
ou
With the notatien ugn) = ———%) we have

n
oY Y=0
(n) _ p-15(n) . n
U = B RI [R(B(u1 uo))] (12)
where R%n) = an-l(x)/dxnlxzo. Note that uézp) = 0 for all values of n be-

cause R_l(x) is also odd. This sets a large fraction of the terms in the per-

turbation series to zero. From Eq. (9), we see tha. & sufficient condition
oA

r _ .
for 5?-)Y=° = 0 is that

IS R(B(ul - uo))dQ =0 . (13)

We then choose uo(r) such that Eq. (13) is satisfied for all velues of r.

We still have to choose a functional form for R. Note that if R%n) is

bounded and R(x) behaves, at werst, like (&n x)k as x » o, then uén) will be

small for large values of B. We have used R(x) = sinh-l(x). This leads to

simple values for Rgn);, i.e.,

(n) _ f0 if n even
Ry " = { t if n odd (14)
Equation (12) then becomes
USCUMEIES S PO TOMEERON) bt (15)

(Fer large x, sinh-l(x) + &n(2x). For small x, sinh-l(x) + x.) Equation (13)

then oecomes
IS sinh-1 (B(ul - uo))dQ =0 . (16)

Figure 2 shows the dependence of u, on B for a fixed value of r. At small

values of B, one gets the usual A-expansion which yields the arjithmetic mean.



As B increases, u, rapidly approaches a constant value. In the limit of B » @
this is just the median of the potential. Omne does not expect the perturba-
tion series to converge in the 8 + ® limit, but for intermediate values of B
the series can couverge and the u, obtained is almost identical to that for
the B + ® limit. Therefore, in practice we use the median as our choice of an
effective spherical potential.

With a transformation of variables, one can obtain perturbation theories
that give nearly the same results even in the small B limit where the conver-
gence properties of the series are better. One special case we will call
radial averaging. For a u](r,Q) that is invertible, we can construct a radial
function rl(u,Q) which is its inverse. The effective spherical potential is
ro(u), which car be inverted to obtain uo(r). With the definition of ry given
by

R(B(rY - 1)) = YR(B(r; - r4)) (17)
we obtain
a(2n+1)r
(2n+1) Y _ w1 ,(2n+1) 2n+1
r = =B R [R(B(r, = r )] . (18)
0 ayi2n+1) y=0 1 1 0
and
r82n) =0, n a non-negative integer.
We can then transform back to obtain the uén) that are used in the perturbation
geries. In particular,
du
(1) . _ 70 (1)
Yo "3 To (19)
which implies
JI R(B(ry = ry))d = 0 (20)

is the transformed furm of Eq. (13). Figure ? also shows the B dependence of
this potential. Note thst even at B » 0, the potential is within a few per-

cent of th large B value. By changing variables, the anisotropy has been

.-



reduced from a factor of 20 to about 30%. Of course the radius needs to be
known more accurately to get the same accuracy in the potential, but the per-
turbation series converges faster because the anisotropy is smaller.

The repulsive part of the potential can be treated in this manner but the
attractive part is not invertible. However, we can write a general transfor-
wation of coordinates and choose a form that is similar to radial averaging
but pr.serves invertibility for the entire potential. Let F(u,r) be an in-
vertibie function of potential and :adius. Also let uy(F,Q) depend on F(u,r)

instead of r. One then has

9
—

u_(y=0) 1
9y F,0

R§1)[R(B(u1 - uo))] , (21)

-

which differs from Eq. (12) in that the derivative is evaluated at constarnt

du_(y=0)
F,Q iastead of r,2. We must then transform back to 5y Q- From the
) ’
chain rule,
Qg) - 8u) + 9u aF (22)
= av aF v '
Wia N 8/ oig
g};) _ ar) + F) or (23)
- 8. ’
du Y,0 du r dr u du Y,0
and
Qf.) = 8 ) 8u (24)
3y r,Q Bu r oY r,Q
du duO
Note that for y = 0, 5;)Y»Q =35 Substituting Eqs. (23) and (24) in Eq. (22)
and solving for du we have
3y /r, 01’
£)
du _ Ou it )
§§) = 5?) s+ 1) (25)
£, F, 3r) du-
u 0



The term in parentheses is independent . 2, so we have ia analogy to Eq.

(13),
S5 RBQ(F,0) - uyB))da =0 , (26)

for the determination of uo(F). As a special case, we have chosen ¥ = u + sr,
where s is a constant. For a proper choice of s, lines of constant F will be
steeper than the slope of the potential for all values of r,2. This leads to
an invertible transformation and a well defined value of ug- For a choice of
s = -100°K/R, the results are nearly the same as for the radial averaging but
are also defined for the attractive region.

Using the median as the effective spherical potential, the results for N2
are good to 1.5% or better in the region of 1.3 g/cm3 < p <2.3 g/cm3 and
500°K < T < 12000°K. Preliminary results for CO2 indicate an accuracy of
about 3%. So we have demonstrated the existence of an accurate effective
spherical potential for molecules commonly found in detonation products and
bave shown how to find these potentials where the anisotropic potentials are
known. These results make reasvnable the procedure of fitting spherical po-
tentials to data. They imply an even better empirical method. That is, to
fit the data with an anisotropic potential where the thermodynamics is evalu-

ated using the effective spherical potential.
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Fig. 1.
Isotherms and Hugoniot for Ny from MD (+ = isotherm, ® = Hugoniot) and an ef-

fective spherical potential (line) fit to pressure, energy, and temperature on
the MD Hugoniot. (kK = 103 Kelvin.)
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Fig. 2.

Spherical potential at r = 3.0 R for potential averaging (dashed line,

Eq. (13)) and radial averaging (solid line, Eq. (20)) as a function of the
parameter B. The radial averaging is plotted vs 10”4 B since 104 BAr
roughly correlates with BAu.
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